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ABSTRACT: This paper describes the architecture of the Airspace Concept Evaluation System (ACES), a fast-time 
simulation being developed by NASA as an analysis tool for evaluating novel concepts in air traffic management. ACES 
has the goal of supporting a wide range of studies and evaluations. Researchers will use ACES for evaluating a wide 
range of air traffic management concepts and technologies. Consequently the ACES architecture is required to be 
computationally efficient, flexible and modular. At the core of the ACES architecture is the High Level Architecture 
(HLA) RTI integrated with Cybele, an agent infrastructure.  The paper describes how the agent- and HLA-based 
approach chosen for ACES satisfies customer requirements, how an ACES federation operates and provides an 
operational concept of how researchers will work with the system.  
 

1. Introduction 
Over time, the demand for air travel continues to increase. 
With an average traffic growth rate of over 4% per year 
current studies predict significant increases in delays and 
air traffic congestion in the coming years. [1] There is 
significant concern that the current NAS operational 
paradigm cannot accommodate the forecasted steadily 
increasing air travel demand. NASA, as a leader in Air 
Traffic Management research, has made improvement of 
the National Airspace System one of its highest priorities. 
In 2002 NASA initiated the Virtual Airspace Modeling 
and Simulation (VAMS) Project, a five year research and 
development effort in response to the projected growth of 
the demand for air travel and lack of sufficient system 
capacity to meet this demand. The need to evaluate the 
costs and benefits of new operational paradigms early in 
the development process is of paramount importance in 

identifying the most promising concepts. In recognition of 
this critical evaluation function, one objective of the 
NASA VAMS Project is to develop a national simulation 
and modeling capability for system-level design and 
tradeoff studies. This objective is being met through the 
development of the Airspace Concept Evaluation System 
(ACES) fast-time simulation [1][3]. This paper describes 
the architecture of the ACES system and shows how this 
architecture meets VAMS project requirements. 
 
The initial major application of ACES will be in 
evaluating a set of operational concepts being developed 
within VAMS. These operational concepts range from 
insertion of technologies into particular segments of the 
NAS (e.g., the use of automation to increase runway 
throughput at airports) to system-wide operational 
changes (e.g., shifting traffic away from “hub and spoke” 
operations towards “point to point” service). Some 



concepts are complementary and may ultimately be 
combined, while others offer competing solutions to 
particular NAS capacity challenges. Evaluations of 
operational concepts must be able to include cost, 
capacity and safety metrics.  
 
The need to flexibly evaluate a varied set of individual 
and combined concepts leads to a set of simulation system 
requirements including: flexible simulations that can be 
tailored to individual researchers’ needs ("plug and play 
modeling toolkit"); standardized modeling interfaces to 
allow for easy integration of new models and legacy 
simulations; ability to scale to multiple processors to 
achieve required fast-time performance; ability to 
integrate legacy codes; and data collection that is easily 
adaptable to the researcher's specific needs. 
 
This paper describes the architecture of the of the ACES 
system. At the core of the system is the High Level 
Architecture (HLA) integrated with Cybele‰ [4] an 
agent-based modeling and simulation framework. The 
agent infrastructure provides the modeling and simulation 
framework at the federate level while the HLA RTI 
provides the infrastructure at the inter-federate level. The 
architecture fosters composability by (i) insulating models 
from the specifics of particular simulation frameworks, 
thus making it easier to reuse them in a range of 
environments; (ii) allowing models to be composed both 
within the federate and at the FOM level; and (c) 
providing core services such as time management, event 
management, thread management and communication 
services at the federate level that are compatible with the 
RTI. The architecture reduces the effort required on the 
part of the modeler by abstracting away the details of 
distributed simulation. 
 
The paper is organized as follows. In Section 2 we define 
agents and their relation ship to federate and federations. 
In Section 3 we present the design of the ACES 
architectures. Specific details of the agent simulation 
framework and its interaction with the RTI Are defined in 
sections 4 and 5 respectively. A brief overview of the 
model design and development from a modelers’ 
perspective is presented in Section 6. Simulation 
Management and data collection are discussed in Section 
7. Section 8 provides conclusions and directions for future 
work. 

2. Terminology and Definitions 
A software agent is often defined as persistent software 
entity that acts autonomously on behalf of a user by 
receiving (via sensors) inputs (messages, events) and acts 
(sends a response, changes an internal state) in response 
to the inputs (See [5][6] and references therein). 

Attributes of agents can also include intelligence, fault 
tolerance, mobility, proactive behavior, adaptability etc. 
From a software perspective we define an agent as a 
software object that possesses the following conceptual 
characteristics:  
•  Encapsulation of local state. Agents encapsulate state 

and cannot directly access the state of other agents.  
This enables agents to be reconfigured and 
distributed across nodes. 

•  Independent execution. Agents independently control 
how and when they execute.  There is no single 
execution control structure that controls agent 
execution.  

•  Message and event driven behavior. Agents interact 
with the world and with other agents by 
communicating through some well defined-set of 
messages and protocols. 

 
From a modeling and simulation perspective we view an 
agent as having the following organization that is based 
on the Activity Centric Programming Paradigm (ACP) 
and characteristics [7]: 

•  An agent defines an autonomous module of a 
particular simulation that interacts with other agents 
via messages/events.  Agents are also typically the 
smallest unit of the simulation that can be distributed. 
Example: Flight  Agent, Center Air Traffic Control 
(ATC) Agent, Airport Agent. 

•  Each agent is composed of activities where each 
activity encapsulates a particular role/behavior of the 
agent.  Example: ATC agents can be decomposed 
into activities corresponding to Conflict Detections & 
Resolution (CD&R), aircraft vectoring and inter-
controller communication and handoffs. 

•  Each activity is further composed of  (i) a role layer 
that describes the syntax and semantics of the 
different types of interactions that an agent can 
perform in an application. Roles capture the 
formalities of an interaction-protocol. For example a 
role layer can define the interaction protocol of 
handoff between controllers (ii) a domain layer that 
represents the domain expertise (e.g., flight 
dynamics, reasoning component, sorting etc) of the 
agent and can be implemented in any 
software/languages or could even be legacy software; 
and (iii) a glue layer consisting of a set of adapter 
objects that implement the interface required by a 
role by making appropriate method invocations on 
the local domain objects. The adaptor layer loosens 
the coupling between models and communications 
protocols, facilitating reuse of models across multiple 
applications. 



 
In a simulation we view the relationship between agents, 
federates and federations as follows 
•  A federate is composed of a set of individual agents. 

For example a North East federate could be 
composed on the set of airports, air traffic control 
facilities and flights in the northeast corridor. 

•  The federation describes the combined system that is 
composed of constituent independently executing 
programs known as federates. 

 

 

Figure 1: Activity/Agent/Federate/Federation Hierarchy 

Figure 1 depicts the relationship between agents and their 
activities, federates and federations in ACES. 

3. ACES Architecture 

3.1 Architectural Requirements 
ACES is being developed to satisfy a set of goals and 
requirements encompassing both runtime and 
development-time lifecycle phases. These include:  
Run-time: ACES is a fast-time distributed simulation 
system. At runtime a collection of networked computers 
work together to generate a representation of the NAS, 
with each computer being assigned some subset of a 
scenario’s domain elements and support functions (e.g., 
data collection). The primary goal of using multiple 
computers is to obtain higher performance via parallel 
execution. Consequently, the primary job of the run-time 
architecture is to provide and integrated execution 
environment that allows the federation’s computers to run 
in a coordinated and efficient fashion. This is 
accomplished by providing a distributed time 
management facility that ensures that the various 
federates stay synchronized, an efficient data distribution 
mechanism that works within time management to ensure 
that messaging between federates adheres to the causality 

of the simulation (that is, messages always get delivered 
to the application in order of simulation time, regardless 
of network delivery order) and a set of simulation control 
functions that allow the federates to perform coordinated 
start-up, shut-down, etc.  
Development-time:  ACES also has the driving 
requirement of being configurable, based on a model 
toolbox. Composability of ACES executions as needed for 
particular studies is required both within federates and 
between federates. The first level of composability is 
intra-federate, model-level composition. This level deals 
with models within federates. Ideally, this level of 
composition should not only facilitate model development 
and federate assembly but also insulate the model 
developer from needing to consider the vagaries of 
distributed simulation. 
Interoperability: The second level of ACES composition 
exists between federates. ACES complies with the High 
Level Architecture. Thus, entire federates, whether or not 
they are built using the ACES infrastructure, can be 
executed together as long as they are HLA-compliant and 
use the ACES FOM and Federation Agreements.  

Usability: The simulation system must not only execute 
quickly but also be usable by analysts. Run-time usability 
features include the ability to control the simulation from 
a single computer and the ability to support visualization 
of scenario evolution. Usability also includes capabilities 
to connect the simulation to the analytical context in 
which it is used. This includes the ability to collect data 
from the simulation and manipulate simulation data into 
formats which can be fed to downstream assessment 
tools.   
Life-cycle Features: Last, the use and management of 
analytical simulation tools can be greatly aided by 
lifecycle tools that manage the model toolbox and system 
databases, create scenarios and automate linkages to 
external data. The ACES system design considers such 
capabilities. Such tools are, however built “around” the 
simulation and so are not included in ACES system 
requirements, detailed architecture or planned 
capabilities. 

3.2 Architectural Vision 
Figure 2 shows the overall system architecture, which can 
be seen as a set of applications that share a common 
infrastructure. The infrastructure supports both run-time 
communications, focused on high-performance data 
exchange and coordination for simulations, and non-
runtime communications, focused on managing persistent 
data (simulation inputs and outputs). As shown in Figure 
2, the simulation infrastructure is built on a foundation of 
standard networking protocols provided by the computer 
operating system (shown in green).  Layered above this 
are industry-standard inter-process communications 
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protocols including HTTP, Remote Method Invocation 
and ODBC/JDBC for database access. This layer of the 
architecture also includes the HLA RTI, which provides 
the backbone of run-time communication. Non-runtime 
communication is based primarily upon ODBC/JDBC 
database communications. 
 
The communications layer includes several standards for 
representing data and commands. Data representation 
standards include the HLA Federation Object Model as 
expressed by the HLA Object Model Template as well as 
the Extensible Markup Language (XML) promulgated by 
the World Wide Web Consortium (W3C). 
 
Above these infrastructure components sits the ACES 
simulation engine/agent framework. ACES federates are 
not required to use this framework; as shown in Figure 2, 
COTS, GOTS and legacy codes can be used in ACES 
federations. Use of the simulation engine, however 
greatly facilitates development of simulations made up of 
“plug-and-play” models by: enforcing clean model 
interfaces, providing modelers a layer of insulation from 
distributed communications and time coordination details 
and providing built-in basic services for simulation time 
and event management. 
ACES infrastructure components and applications are 
connected not only through common infrastructure 
functionality but also by common data models. Common 
data models take the form of Federation Object Models 

(which are mapped with matching inter-agent message 
classes) and database schemata. These common models 
are the foundation of interoperability among run-time 
applications as well as between run-time and post-
processing tools. Common schemata could also be used to 
add simulation initialization data into this common 
picture. 
 
Last are the ACES applications themselves. ACES run-
time applications include Cybele-based simulation 
federates, utility and control federates implementing 
functions such as control of simulation rate, monitoring 
and data collection. The various run-time applications 
together create an integrated synthetic representation of 
the National Airspace System. The applications execute 
as independent programs across multiple computers, 
using the infrastructure to communicate, coordinate and 
store data. Post-runtime applications can access the stored 
data to support analyses of experimental data collected 
from simulation executions. 

4. Agent Simulation Infrastructure for 
Federates 

As discussed earlier ACES uses an RTI compliant agent 
infrastructure and agent-based approach to model and 
simulate entities within a federate.  
 
The agent infrastructure is based on IAI’s 
OpenCybele‰/Cybele‰ agent infrastructure. Cybele is 
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Figure 2:  Unified System Architecture 



built on the top of the Java 2 platform and provides the 
runtime environment for control and execution of agents. 
The architecture consists of a kernel and several service 
implementations.  

 
The architecture kernel provides certain application 
interface methods for agent programmers to write classes 
representing activities using the ACP paradigm. These 
methods are called Activity Oriented Programming 
Interface (AOPI) methods. The AOPI’s in turn use the 
published interfaces to different agent services. The 
execution environment supporting ACP is a layer above 
Java Virtual Machine. (See Figure 3). Since ACP is a 
restricted version of OOP, the execution environment 
supporting ACP restricts the functionality of activity 
objects to be event-driven. Note that the activity classes 
also use the java packages in addition to AOPI. 
 

 

Figure 4: Service Layered Architecture 

 The agent-infrastructure adopts a service-layered 
architecture promoting plug-n-play capability of agent 
services (see Figure 4). The services and their interfaces 
are defined in such a way that performance can be fine-

tuned by loading different service implementations as 
appropriate to the OS/platform/network and/or the agent 
application domain, without having to re-write the agent 
code 
 
 The agent services are categorized into three types of 
layers–-basic, fundamental, and supplemental--based on 
their relevance to a typical agent runtime environment.   
The basic are the essential services required for creating 
agents, activities, agent operation, and inter-activity 
communication. They include error handling, concurrency 
management, event handling, thread-management, and 
internal event services. The fundamental services are 
primarily event generation services that are essential for 
autonomous and communicative multi-agent system. 
They allow an agent to send messages to another agent 
that is either co-located on the same host or is on a host 
that is across the network. They also allow an agent to set 
an alarm and generate a self timer-event. Services 
included in the fundamental layer are communication, 
timer, data sharing and GUI services. The supplemental 
services are services that enhance performance and 
include migration and load balance services  
 
The architecture supports the (ACP) paradigm, distributed 
computing/simulation, location independent channel 
based publish-subscribe messaging including, 
synchronous, asynchronous, broadcast and point-to-point 
messaging.   

5. Agent Infrastructure-HLA Interactions 
Integrating the Cybele infrastructure with the RTI 
involved several steps. First, the native Cybele inter-agent 
communications service had to be replaced with HLA-
compliant communications. Second, the Cybele timer, 
event management and thread management service were 
adapted to support time-managed, fast-time discrete event 
simulation and sender-side filtering. In this section we 
discuss the details of interfaces of the communication, 
timer and event management services with the HLA/RTI. 

5.1 Interfacing with the RTI:  Interest 
Management 

The agent infrastructure uses a concept of message 
channels for communications. Agents publish messages 
to particular channels using the provided AOPI’s, and 
other agents can opt to receive messages by subscribing to 
channels. The RTI uses a similar mechanism, however in 
place of channels the RTI uses the more generic notion of 
routing spaces. If routing spaces are not defined then 
interactions are forwarded to all other federates 
subscribed to that class of interaction; routing spaces 
optimize network utilization by allowing data to be 

 

Figure 3; The layers of Activity objects and its execution 
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filtered at the sending end so that interactions get send 
only to the federates interested in that interaction. 
 
Conversion between Cybele communications notions 
(serialized Java objects over message channels) and RTI 
notions (FOM objects over RTI Data Management or 
Data Distribution Management) involves several steps 
which are done, transparent to the user, by the 
infrastructure. 
 
First, each federate knows the interests of the other 
federate on the network. If no other federate is interested 
in a published message then the sending federate delivers 
it to its local channels but it is not distributed by the RTI. 
This feature is known as Sender Side Filtering. 
 

If a remote interest in the data has been established, then 
the infrastructure checks to see if there is a matching 
FOM interaction for this Cybele message object. If the 
FOM interaction does not exist then the object is 
packaged as a serialized Java object within a special FOM 
interaction class. This interaction is forwarded to the other 
federates, which reconstitute the object into the 
appropriate Java class and pass it to the appropriate 
Cybele channel. 
 
If, however, a matching FOM class is found, the attributes 
of the Java class are copied into the matching attributes of 
the FOM class (matching requires identical names 
between Cybele and FOM attribute names). Any 
“leftover” parameters in the Cybele object are streamed 
into an extra interaction attribute called “reserved”. At the 
receiving end an object of the appropriate Java class is 
again reconstituted from the data in the FOM interaction 
and passed to the appropriate Cybele channel.  

 
The integrated agent-HLA approach eliminates the need 
for the modeler to distinguish between inter-and intra-
federate messaging. Agents simply send and receive 
messages and the common agent infrastructure takes care 
of dispatching messages to other interested agents, 
whether they are local or in different federates. This 
approach allows simulation developers to define a 
message once; inter-agent (intra-federate) messages are 
automatically carried through to the inter-federate level.  
 
This approach also provides automation in FOM agility. 
The contents of inter-agent messages can be augmented 
without affecting the FOM, as each FOM class contains a 
holder for packed “extra” attributes and the infrastructure 
automates translation between native Java and FOM 
formats. The infrastructure also minimizes required 
maintenance when both the Java message classes and the 

FOM change, as the hookup between the two message 
representations is automated.  

 
Last, the ACES infrastructure is able to handle objects 
with greater complexity than can natively be represented 
in a FOM. ACES message classes can contain sub-objects 
as well as collections of both primitive and object types. 
The infrastructure handles such objects by converting 
their complex components into XML strings. These 
strings are passed as RTI attributes and are reconstituted 
at the receiving end.  

5.2 Interfacing with the RTI Time Management:  
Timer Service 

Time management and synchronization is critical in any 
distributed simulation. To enable composability it is 
critical that the models and/or simulations issues related 
to time management across the simulation be decoupled 
from the models. To ensure this the infrastructure timer 
service is built around the concept of logical time. (The 
logical time is also referred to as simulation time since it 
represents the current time within the simulation.   The 
time management approach uses HLA’s event driven 
next-event request (NER) functionality to advance time. 
 
Each Cybele-HLA federate has associated with it the 
current logical time t, that is initially initialized during 
start-up across the federation by a global discrete clock. 
The models use the various timer AOPI’s to set 
timers/alarms, with respect to the local logical time, to 
trigger/process events at desired intervals.  
 
Models are written as event-driven agents that are 
independent of the underlying time management 
infrastructure.  They do not need to know anything about 
advancing or managing time. Rather, they need only to 
respond to individual events and how to schedule events 
using timers.  For example, a flight model can have a 
timer that sends a message regarding its position and 
speed to a “controller” agent every 10 logical time units.  
 
Each federate is in one of two states, the message 
processing state or the advancing time state.  In the 
message processing state, the federate is in the process of 
dispatching all messages at the current logical time t.  As 
agents process messages and timer events, new messages 
timestamped at t+1 may be generated, or new timer 
events may be scheduled at future logical times. Once all 
messages on the system message queue have been 
processed, the federate seeks to advance time to the next 
logical time at which it has events to process by entering 
the advancing state 
 



In the advancing time state, the federate may continue to 
receive messages timestamped at t+1.  However, it is 
guaranteed not to generate any more messages since all 
messages have been processed.  

5.3 ACES Event Management 
The ACES event management service works in 
conjunction with the time management service to insure 
that messages are delivered in a predictable and 
deterministic manner. It is designed to support repeatable 
simulation under any configuration.  This means that 
given the same set of agents with the same initial 
conditions, the system will produce the exact same results 
under any assignment of agents to Cybele-HLA federates. 
This is made possible by the fact that the agent is the 
basic unit of distribution: each agent can be modeled as a 
deterministic entity that takes events in a stream and 
produces new events in the “future.” 
 
In order to support repeatability, it is important to ensure 
that all events always arrive in the same order.  For 
example if agents A, B, and C are sending to agent X 
from different federates, the order of messages arriving at 
logical time t is not guaranteed to be the same, since HLA 
RTI does not order messages with the same timestamp.  
Moreover, internal messages and timer events must also 
be ordered correctly. 
 
To insure deterministic message deliver, each message is 
tagged with the sending agent, a sequence number and the 
activity identity.  During the beginning of each message 
processing state, all of the events for each agent are sorted 
according to a specific comparison criterion that produces 
deterministic results. 
 
Although the Cybele-HLA enables repeatable, 
reconfigurable simulation, individual models/agents must 
still be written in a manner that allows deterministic 
behavior which is independent of local configuration. For 
example, it is necessary to ensure that all agents that use 
pseudorandom number sequences have their own seeds 
and generators and do not share them with other agents. 

6. Developing Models in ACES 
From a models perspective developing/coding models in 
ACES reduces to coding agents and their interactions with 
other agents using the AOPI’s corresponding to creating 
agents, creating activities, setting up timers, publishing 
and subscribing to appropriate channels, and invoking 
appropriate callback in response to events (messages and 
timers). From a modelers perspective no modification to 
the agent software needs to be made to compose a set of 
agents into a federation, join the federation and interact 

with other simulations via the RTI.  These activities are 
handled by the agent infrastructure. Transparent to the 
user the infrastructure (i) maps Cybele channels into 
appropriate RTI routing space for inter-federate 
communications; (ii) translates intra-federate serialized 
messages into FOM complaint interactions when they go 
across the network; (iii) implements message transport; 
and (iv) Integrates Cybele-time management with RTI 
time management. 

7. Simulation Control and Data Collection 
As an HLA federation the ACES system is amenable to 
standard federation control functionality. The primary 
simulation control module is the Visualization/Scenario 
Tool (VST). The VST, which is itself a Cybele-based 
federate, performs a number of functions. First, it controls 
initialization for the entire ACES federation. In ACES 
each Cybele-based federate starts up in a generic mode – 
it does not immediately create any model agents. The 
VST allocates functionality to the various federates, 
providing information to each as to which domain entities 
it is assigned and consequently what set of agents it is to 
instantiate. The VST also provides runtime visibility into 
the federation execution. It includes a plan view display 
and can also display a range of flight and air traffic 
control parameters. The VST and related helper 
applications also include a range of other utility functions 
including speed control (allowing the simulation to be 
slowed down or coordinated with wall-clock time), 
synchronized start-up, and distribution of initialization 
data. 
Data collection in the present build of ACES is 
accomplished primarily through the GOTS DCT data 
collection tool. This has the advantage of being 
configurable and was able to be implemented with a 
modest effort, however limits data collection to FOM 
data. Future builds will investigate mechanisms for 
collecting federates’ internal state data as well as FOM 
information.  

8. Conclusions  
The ACES design provides a unique approach to the 
modeling and simulation of new NAS concepts. By 
acknowledging the need to provide a flexible and 
dynamic simulation capability, the ACES design utilizes 
the HLA / Agent Infrastructure to realize these critical 
requirements. The Modeling Toolkit approach, and the 
agent-based paradigm used to structure the models and 
their interactions, provides a modeling structure that 
correlates to the NAS operational environment.  

Current architectural work focuses on enhancing the 
multiple run/Monte Carlo simulation features, 
performance optimization, implementation of a richer 



data collection mechanism and continued support for 
population of the model toolkit. 

The combination of these new capabilities with the 
proven agent-based infrastructure will provide a 
simulation tool capable of supporting complex, 
distributed fast-time simulation to meet NASA's research 
requirements.  
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